190 research outputs found

    Permutation invariance and uncertainty in multitemporal image super-resolution

    Get PDF
    Recent advances have shown how deep neural networks can be extremely effective at super-resolving remote sensing imagery, starting from a multitemporal collection of low-resolution images. However, existing models have neglected the issue of temporal permutation, whereby the temporal ordering of the input images does not carry any relevant information for the super-resolution task and causes such models to be inefficient with the, often scarce, ground truth data that available for training. Thus, models ought not to learn feature extractors that rely on temporal ordering. In this paper, we show how building a model that is fully invariant to temporal permutation significantly improves performance and data efficiency. Moreover, we study how to quantify the uncertainty of the super-resolved image so that the final user is informed on the local quality of the product. We show how uncertainty correlates with temporal variation in the series, and how quantifying it further improves model performance. Experiments on the Proba-V challenge dataset show significant improvements over the state of the art without the need for self-ensembling, as well as improved data efficiency, reaching the performance of the challenge winner with just 25% of the training data

    RAN-GNNs: Breaking the Capacity Limits of Graph Neural Networks

    Get PDF
    Graph neural networks (GNNs) have become a staple in problems addressing learning and analysis of data defined over graphs. However, several results suggest an inherent difficulty in extracting better performance by increasing the number of layers. Recent works attribute this to a phenomenon peculiar to the extraction of node features in graph-based tasks, i.e., the need to consider multiple neighborhood sizes at the same time and adaptively tune them. In this article, we investigate the recently proposed randomly wired architectures in the context of GNNs. Instead of building deeper networks by stacking many layers, we prove that employing a randomly wired architecture can be a more effective way to increase the capacity of the network and obtain richer representations. We show that such architectures behave like an ensemble of paths, which are able to merge contributions from receptive fields of varied size. Moreover, these receptive fields can also be modulated to be wider or narrower through the trainable weights over the paths. We also provide extensive experimental evidence of the superior performance of randomly wired architectures over multiple tasks and five graph convolution definitions, using recent benchmarking frameworks that address the reliability of previous testing methodologies

    NIR image colorization with graph-convolutional neural networks

    Get PDF
    Colorization of near-infrared (NIR) images is a challenging problem due to the different material properties at the infared wavelenghts, thus reducing the correlation with visible images. In this paper, we study how graph-convolutional neural networks allow exploiting a more powerful inductive bias than standard CNNs, in the form of non-local self-similiarity. Its impact is evaluated by showing how training with mean squared error only as loss leads to poor results with a standard CNN, while the graph-convolutional network produces significantly sharper and more realistic colorizations

    Learning Localized Representations of Point Clouds with Graph-Convolutional Generative Adversarial Networks

    Get PDF
    Point clouds are an important type of geometric data generated by 3D acquisition devices, and have widespread use in computer graphics and vision. However, learning representations for point clouds is particularly challenging due to their nature as being an unordered collection of points irregularly distributed in 3D space. Recently, supervised and semisupervised problems for point clouds leveraged graph convolution, a generalization of the convolution operation for data defined over graphs. This operation has been shown to be very successful at extracting localized features from point clouds. In this paper, we study the unsupervised problem of a generative model exploiting graph convolution. Employing graph convolution operations in generative models is not straightforward and it poses some unique challenges. In particular, we focus on the generator of a GAN, where the graph is not known in advance as it is the very output of the generator. We show that the proposed architecture can learn to generate the graph and the features simultaneously. We also study the problem of defining an upsampling layer in the graph-convolutional generator, proposing two methods that respectively learn to exploit a multi-resolution or self-similarity prior to sample the data distribution

    Rethinking the compositionality of point clouds through regularization in the hyperbolic space

    Get PDF
    Point clouds of 3D objects exhibit an inherent compositional nature where simple parts can be assembled into progressively more complex shapes to form whole objects. Explicitly capturing such part-whole hierarchy is a long-sought objective in order to build effective models, but its tree-like nature has made the task elusive. In this paper, we propose to embed the features of a point cloud classifier into the hyperbolic space and explicitly regularize the space to account for the part-whole hierarchy. The hyperbolic space is the only space that can successfully embed the tree-like nature of the hierarchy. This leads to substantial improvements in the performance of state-of-art supervised models for point cloud classification

    Signal Compression via Neural Implicit Representations

    Get PDF
    Existing end-to-end signal compression schemes using neural networks are largely based on an autoencoder-like structure, where a universal encoding function creates a compact latent space and the signal representation in this space is quantized and stored. Recently, advances from the field of 3D graphics have shown the possibility of building implicit representation networks, i.e., neural networks returning the value of a signal at a given query coordinate. In this paper, we propose using neural implicit representations as a novel paradigm for signal compression with neural networks, where the compact representation of the signal is defined by the very weights of the network. We discuss how this compression framework works, how to include priors in the design, and highlight interesting connections with transform coding. While the framework is general, and still lacks maturity, we already show very competitive performance on the task of compressing point cloud attributes, which is notoriously challenging due to the irregularity of the domain, but becomes trivial in the proposed framework

    Learning Robust Graph-Convolutional Representations for Point Cloud Denoising

    Get PDF
    Point clouds are an increasingly relevant geometric data type but they are often corrupted by noise and affected by the presence of outliers. We propose a deep learning method that can simultaneously denoise a point cloud and remove outliers in a single model. The core of the proposed method is a graph-convolutional neural network able to efficiently deal with the irregular domain and the permutation invariance problem typical of point clouds. The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs from similarity among the high-dimensional feature representations of the points. The proposed approach outperforms state-of-the-art denoising methods showing robust performance in the challenging setup of high noise levels and in presence of structured noise

    DeepSUM: Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images

    Get PDF
    Recently, convolutional neural networks (CNNs) have been successfully applied to many remote sensing problems. However, deep learning techniques for multi-image super-resolution (SR) from multitemporal unregistered imagery have received little attention so far. This article proposes a novel CNN-based technique that exploits both spatial and temporal correlations to combine multiple images. This novel framework integrates the spatial registration task directly inside the CNN, and allows one to exploit the representation learning capabilities of the network to enhance registration accuracy. The entire SR process relies on a single CNN with three main stages: shared 2-D convolutions to extract high-dimensional features from the input images; a subnetwork proposing registration filters derived from the high-dimensional feature representations; 3-D convolutions for slow fusion of the features from multiple images. The whole network can be trained end-to-end to recover a single high-resolution image from multiple unregistered low-resolution images. The method presented in this article is the winner of the PROBA-V SR challenge issued by the European Space Agency (ESA)

    Deep Learning Methods for Synthetic Aperture Radar Image Despeckling: An Overview of Trends and Perspectives

    Get PDF
    Synthetic aperture radar (SAR) images are affected by a spatially correlated and signal-dependent noise called speckle, which is very severe and may hinder image exploitation. Despeckling is an important task that aims to remove such noise so as to improve the accuracy of all downstream image processing tasks. The first despeckling methods date back to the 1970s, and several model-based algorithms have been developed in the years since. The field has received growing attention, sparked by the availability of powerful deep learning models that have yielded excellent performance for inverse problems in image processing. This article surveys the literature on deep learning methods applied to SAR despeckling, covering both supervised and the more recent self-supervised approaches. We provide a critical analysis of existing methods, with the objective of recognizing the most promising research lines; identify the factors that have limited the success of deep models; and propose ways forward in an attempt to fully exploit the potential of deep learning for SAR despeckling
    • …
    corecore